
5618 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 12, DECEMBER 2017

Combination of Sharing Matrix and Image
Encryption for Lossless (k, n)-Secret

Image Sharing
Long Bao, Student Member, IEEE, Shuang Yi, Student Member, IEEE,

and Yicong Zhou, Senior Member, IEEE

Abstract— This paper first introduces a (k, n)-sharing
matrix S(k,n) and its generation algorithm. Mathematical analy-
sis is provided to show its potential for secret image sharing. Com-
bining sharing matrix with image encryption, we further propose
a lossless (k, n)-secret image sharing scheme (SMIE-SIS). Only
with no less than k shares, all the ciphertext information and
security key can be reconstructed, which results in a lossless
recovery of original information. This can be proved by the
correctness and security analysis. Performance evaluation and
security analysis demonstrate that the proposed SMIE-SIS with
arbitrary settings of k and n has at least five advantages: 1) it is
able to fully recover the original image without any distortion;
2) it has much lower pixel expansion than many existing methods;
3) its computation cost is much lower than the polynomial-based
secret image sharing methods; 4) it is able to verify and detect a
fake share; and 5) even using the same original image with the
same initial settings of parameters, every execution of SMIE-SIS
is able to generate completely different secret shares that are
unpredictable and non-repetitive. This property offers SMIE-SIS
a high level of security to withstand many different attacks.

Index Terms— Secret image sharing, visual cryptography,
sharing matrix, image encryption.

I. INTRODUCTION

SECRET image sharing is an interesting research topic in
multimedia security society. Its function is to encrypt an

original image into n different shares. Using k (k ≤ n) or more
shares can successfully reconstruct the original image. With
less than k shares, any information of the original image can
not be accessed. This unique and interesting function allows
secret image sharing to be used in many fields such as general
access structures [1], discrete memoryless network [2], visual
authentication and identification [3], [4], data sharing [5], and
so on.
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Secret image sharing has brought attentions of many scien-
tists [6]–[10]. It can be roughly divided into two categories:
visual cryptography (VC) and polynomial-based secret image
sharing (PSIS). VC comes from the method proposed by
Naor and Shamir [11]. In VC, each share is separate, noise-
like and transparent. When people overlay no fewer than
k shares, the original information will be revealed. It simply
performs secret image sharing using the property of human
visual system [12], but it has several drawbacks. For example,
it is only applicable for binary images. Its image shares are
noisy images that may not be user-friendly and draw attentions
of attackers. Its reconstructed image is of low quality. Because
it has a large pixel expansion ratio, its image shares are
at least two times larger than the original image. Thus,
VC requires a significantly large transmission and storage
costs [13]. To solve these problems, many VC methods have
been developed [14], [15]. For example, the VC application
has been extended to color images using error diffusion [6]; the
noise-like image share can be transformed into a meaningful
image share [16]–[18]; the quality of reconstructed images is
improved to obtain the optimal contrast [19]; and the high
pixel expansion ratio is also reduced by probabilistic VC [20]
and random grid-based VC [21]–[23]. However, these VC
methods still have some intrinsic defects such as a lossy
reconstruction and a large expansion ratio [24]. The lossy
reconstruction means that noticeable distortions exist between
the reconstructed and original images. The high expansion
ratio causes a high transmission cost, because each share has
a much larger size than the original image [6], [17].

PSIS, on the other hand, was firstly proposed by
Shamir [25]. Its core idea is to utilize the Lagrange interpo-
lation to generate image shares and reconstruct the original
image with a minimal number of shares. However, it has
three problems: (1) the Lagrange interpolation requires a
huge computation cost, especially in the reconstruction phase;
(2) a successful reconstruction depends on enough image
shares and the right orders; and (3) the results of the Lagrange
interpolation are in a data range different from one of the
original image. This will result in a possible data loss or
distortion in the reconstruction phase. To address the third
problem, Li et al. proposed a method to calculate the Lagrange
interpolation in G F(28) to achieve a lossless reconstruc-
tion [26]. Chen et al. used quadratic residues to obtain a
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lossless PSIS [27] but their method is suitable only for
(k = 1, n = 2) secret sharing. This framework was improved
later by Ulutas et al. as a generalized model [28]. However,
the first two problems remain unsolved.

Different from existing VC and PSIS methods, this paper
proposes a lossless (k, n)-secret image sharing scheme based
on combination of sharing matrix with image encryp-
tion (SMIE-SIS). In SMIE-SIS, we first introduce a new
(k, n)-sharing matrix. This sharing matrix is given a strictly
mathematical definition, including several special properties
that are vital for secret sharing. We also introduce a simple
but efficient algorithm to generate the (k, n)-sharing matrices.
Based on these sharing matrices, the proposed SMIE-SIS
contains a chaotic-based encryption process and a sharing
encoding algorithm. Its computation cost is much lower than
the reconstruction phase of PSIS. SMIE-SIS also has a low
expansion ratio close to 0.5, indicating that each image share
is only half size of the original image. This low expansion
ratio is beneficial to reduce the cost of transmission and
storage. Meanwhile, the proposed SMIE-SIS is a generalized
method for any settings of k and n and for various formats
of original images such as binary, grayscale or color images.
More importantly, non-duplicate property of SMIE-SIS allows
users to generate various shares in each execution with the
same input. SMIE-SIS also has the verification function to
identify a fake share involved in the reconstruction phase,
which is important for real applications.

The rest of this paper is presented as follows: Section II
will introduce the definition of the (k, n)-sharing matrix and
discuss its application to secret sharing. Section II-B will
propose a fast generation algorithm of the (k, n)-sharing
matrix. Section III will introduce a new lossless (k, n)-secret
image sharing scheme based on combination of sharing matrix
and image encryption. Section IV will provide the simulation
results of image sharing. Section V will present its perfor-
mance analysis. Section VI will show the security analysis.
Finally, Section VII will reach a conclusion.

II. (k, n)-SHARING MATRIX

This section first introduces the mathematical definition of
the (k, n)-sharing matrix (k ≤ n) and its generation algorithm.
Then, an illustrative example will be given to describe the
sharing matrix generation process in detail. Finally, some
mathematical analysis and advantages of (k, n)-sharing matrix
will be discussed.

A. Definition

Let S(k,n) be an n ×w binary matrix, S(k,n)(i, j) ∈ {0, 1},
where 1 ≤ i ≤ n, 1 ≤ j ≤ w. Randomly selecting any p
rows of elements from matrix S(k,n) generates a p ×w binary
matrix Z(s, j), where integers 1 ≤ p ≤ n and 1 ≤ s ≤ p.
If matrix S(k,n) satisfies three following conditions:

1) there is at least one “1” in each row in matrix S(k,n),
namely

w∑

j=1

S(k,n)(i, j) �= 0 (1)

Fig. 1. The proposed (k, n)-sharing matrix generation algorithm.

2) there is at least one “1” in each column in matrix Z
when p ≥ k, namely

p∑

s=1

Z(s, j) �= 0 (2)

3) there is at least one zero column in matrix Z when
p < k, namely

w∏

j=1

( p∑

s=1

Z(s, j)

)
= 0 (3)

where
∑p

s=1 Z(s, j) calculates the sum of the j th column in
matrix Z and

∏w
j=1(.) is a successive multiplication function.

Then, S(k,n) is called the (k, n)-sharing matrix.
For example: Eq. (4) is a (3, 4)-sharing matrix satisfying

the conditions in Eqs. (1)-(3).

S(3,4) =

⎡
⎢⎢⎣

0 1 0 0 1 1
0 0 1 1 0 1
1 0 0 1 1 0
1 1 1 0 0 0

⎤
⎥⎥⎦ (4)

These conditions are also properties of the (k, n)-sharing
matrix and make it suitable for secret sharing. They will be
discussed later.

B. (k, n)-Sharing Matrix Generation

Here, we propose an algorithm to produce (k, n)-sharing
matrices S(k,n).

To generate S(k,n), a straightforward way is to exclusively
try all possible combinations of binary matrices, and determine
each one whether it is a (k, n)-sharing matrix. However,
finding all possible sharing matrices is tedious in practice and
requires a significantly high computation cost.

Here, we introduce a simple but fast algorithm, as shown
in Fig. 1, to generate the proposed (k, n)-sharing matrix
S(k,n). The algorithm contains three main steps: initial matrix
generation, matrix expansion and row extraction. The initial
matrix generation is to create an initial matrix S0. Matrix
expansion is an iterative process to extend S0 into a new
matrix Se with a larger size. Row extraction is to generate
the final (k, n)-sharing matrix S(k,n) by randomly selecting n
rows from Se.

1) Initial Matrix Generation: In initial matrix generation,
we first construct a matrix M1 with size of (2k − 2) × 1.
M1 contains (k − 1) ones and (k − 1) zeros. For example,
M1 = [1 1 1 0 0 0]T for k = 4. We obtain all possible
permutations of M1, denoting Mi , i = 2, . . . ,N , where
N = (2k−2)!

(k−1)!(k−1)! is the number of total possible permutations
of M1. These matrices are concatenated together to generate
the initial matrix S0 with size of (2k − 2) × N , as shown
in Eq. (5).

S0 = [M1,M2, . . . ,MN ] (5)
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2) Matrix Expansion: Using the initial matrix S0, matrix
expansion is to generate a new matrix Se with a large size
according to the value of n. The iteration number equals to
I = max{�log2(n/(2k − 2))�, 0}, where �x� is a ceiling
function to obtain the least integer greater than or equal to x .
Note that S0 is also a (k, n)-sharing matrix where n = 2k −2.
When n ≤ 2k − 2, iteration number I = 0, no expansion
process is needed, and Se = S0. When n > 2k −2, we expand
S0 to generate a new matrix Se using self-repeating. In the
i th(1 ≤ i ≤ I) iteration, matrix Si−1 is equally divided into
k − 1 sub-matrices in the vertical direction. Then, in Si−1, the
j th(1 ≤ j ≤ k−1) “1” of each column will be replaced by the
j th sub-matrix, while any “0” will be replaced by an all-one
matrix with the same size of each sub-matrix. By this self-
repeating process, the size of matrix Se is ((2k −2)∗2I)×Ns ,
where Ns = N I+1.

3) Row Extraction: According to a random sequence or
users’ setting, row extraction is to randomly select n rows
of elements from matrix Se to generate the final (k, n)-sharing
matrix S(k,n) with size of n × Ns .

C. An Illustrative Example

As an illustrative example, we use the proposed generation
algorithm to produce a (3, 5)-sharing matrix S(3,5). Then,
k = 3, n = 5, N = (2×3−2)!

(3−1)!(3−1)! = 6, I =
max{�log2(5/4)�, 0} = 1. Thus, the sizes of matrices S0 and
Se are 4 × 6 and 8 × 36, respectively.

In the initial matrix generation, we have M1 = [1 1 0 0]T

with size of 4 × 1. Matrix M1 contains 2 ones and 2 zeros.
After a permutation process, we obtain other five permutated
matrices M2,M3,M4,M5, and M6. The following lists all six
matrices.

M1 =

⎡

⎢⎢⎣

1
1
0
0

⎤

⎥⎥⎦ M2 =

⎡

⎢⎢⎣

1
0
1
0

⎤

⎥⎥⎦ M3 =

⎡

⎢⎢⎣

0
1
1
0

⎤

⎥⎥⎦

M4 =

⎡

⎢⎢⎣

1
0
0
1

⎤

⎥⎥⎦ M5 =

⎡

⎢⎢⎣

0
1
0
1

⎤

⎥⎥⎦ M6 =

⎡

⎢⎢⎣

0
0
1
1

⎤

⎥⎥⎦

According to Eq. (5), these six matrices are then
concatenated together to form matrix S0 with size of 4 × 6,
as presented by

S0 =

⎡

⎢⎢⎣

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1

⎤

⎥⎥⎦ (6)

Notice that S0 is actually a (3, 4)-sharing matrix. Because
I = 1, we need to apply 1 round of matrix expansion
procedure to S0 to generate an expanded new matrix Se.
As shown in Eq. (7), as shown at the bottom of this page,
Se is with size of 8 × 36.

Finally, we randomly select five rows of elements from Se

to obtain the final (3, 5)-sharing matrix S(3,5) as shown in
Eq. (8), as shown at the bottom of this page. Thus, S(3,5) is a
size of 5 × 36.

D. Discussion

Here, we discuss the proposed (k, n)-sharing matrix from
various aspects, namely: Topic 1: why does any matrix pro-
duced by the sharing matrix generation algorithm meet the
definition of (k, n)-sharing matrix? Topic 2: the advantages of
proposed (k, n)-sharing matrix generation algorithm; Topic 3:
why is the proposed (k, n)-sharing matrix suitable for secret
sharing? Topic 4: why do we combine the sharing matrix
and encryption to propose the new lossless (k, n)-secret image
sharing scheme in the next section?

Topic 1: A matrix example produced by the sharing
matrix generation algorithm has been given in the end of
Section II-C. It is only a justification example to show
that the generated matrix satisfies the three conditions of
(k, n)-sharing matrix in Eqs. (1)-(3). Here, we will provide
the mathematical justification to prove that the initial matrix
S0 and matrix Sk that is generated by randomly selecting k
rows from matrix Se are both (k, n)-sharing matrices.

The initial matrix S0 with size of (2k − 2) × N is the
combination M1 and all its permutations. The number of “1”s
in each row is the same. This means that each row of S0 has
N
2 “1”s. When k ≥ 2, we can obtain N

2 = (2k−2)!
2(k−1)!(k−1)! ≥ 1.

Thus, each row of S0 contains at least one “1”, which perfectly
meets the first condition in Eq. (1). Each column of S0 contains

Se =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0
1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

S(3,5) =

⎡

⎢⎢⎢⎣

1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0

⎤

⎥⎥⎥⎦ (8)
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(k − 1) “0”s and (k − 1) “1”s. When any p rows are selected,
if p ≥ k, the number of “1”s in each column will be at least
p − (k − 1) = p − k + 1 ≥ 1. This satisfies the second
condition in Eq. (2) that there must be at least one “1” in each
column of these selected rows. When p ≤ (k − 1), there must
be at least one column with all “0”. Because the maximum
number of “0”s in each column of these selected rows is
(k − 1) and p ≤ (k − 1), the third condition in Eq. (3) is also
satisfied.

Next, we will prove that the matrix Sk generated from Se

is also a (k, n)-sharing matrix. Firstly, the matrix expansion
is to extend the matrix S0 to Se by adding more “1”s to S0.
Each column of Se also has (k − 1) “0”s and the rest are all
“1”s. The matrix expansion process can be also considered as
permutations of the first column of Se. Each row of Se contains
(N2 )

2 of “0”s. The number of “1”s can be calculated by

Ns − (
N
2
)2 = N I+1 − 1

4
N 2, I ≥ 1

≥ 3

4
N 2, N ≥ 2

≥ 3

Hence, when selecting any k rows from Se to form a new
matrix Sk , there will be at least 3 “1”s in each row, which
satisfied the first condition in Eq. (1). Randomly selecting p
rows from Sk obtains the matrix Z . If p = k, each column of
Z must have at least one “1” and less than (k − 1) of “0”s;
if p ≤ k − 1, there must be one column in Z with all “0”.
Because the maximum number of “0”s in each column of Z
is k − 1. Thus, the second and third conditions are definitely
satisfied.

Hence, we can conclude that the sharing matrices pro-
duced by the proposed generation algorithm in Fig. 1 are the
(k, n)-sharing matrices.

Topic 2: The proposed sharing matrix generation method
is an efficient generation algorithm for producing different
(k, n)-sharing matrices. The proposed algorithm has, but not
limited to, following advantages:

(1) Matrix S0 produced in the initial matrix genera-
tion process is actually a (k, n)-sharing matrix where
n = 2k − 2.

(2) Replacing the initial matrix generation process with
any existing generation method of the (k, n)-sharing
matrix, the proposed algorithm becomes an extended and
generalized version of the existing method.

(3) The proposed algorithm is able to generate different
(k, n)-sharing matrices under any settings of k and n.

(4) With the same settings of k and n, the proposed
algorithm is able to produce different (k, n)-sharing
matrices when using different methods as initial matrix
generation and various random selection strategies for
row extraction.

Topic 3: Here, we provide the mathematical analysis of
sharing and reconstruction processes in secret sharing to prove
that why the proposed (k, n)-sharing matrix is suitable for
image sharing. The analysis contains two parts:1) Sharing
process and 2) Reconstruction process. For better understand-

ing, an illustrative example is also given in each part of the
analysis.

1) Sharing Process: Suppose we want to share an integer
data P with size of 1 × w. Firstly, we construct a matrix P1
by

P1(i, :) = P, i = 1, 2, . . . , n (9)

Given a sharing matrix S with size of n × w, the sharing
process then generates a matrix R with the same size of S
using Eq. (10).

R = P1 ∗ S (10)

where, ∗ is point-to-point multiplication in this section. In
matrix R, each row is a share and totally we have n shares.

Here, we give an illustrative example to show the detailed
procedures of sharing process.

Suppose an original data matrix P = [123 45 63 79 1 22]
is to be shared by a sharing matrix S(3,4) as defined by

S(3,4) =

⎡
⎢⎢⎣

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1

⎤
⎥⎥⎦ (11)

According to Eq. (9),

P1 =

⎡

⎢⎢⎣

123 45 63 79 1 22
123 45 63 79 1 22
123 45 63 79 1 22
123 45 63 79 1 22

⎤

⎥⎥⎦ (12)

Using Eq. (10),

R = P1 ∗ S(3,4) =

⎡

⎢⎢⎣

123 45 0 79 0 0
123 0 63 0 1 0
0 45 63 0 0 22
0 0 0 79 1 22

⎤

⎥⎥⎦ (13)

where each row of R is a share, and totally we have
4 shares.

2) Reconstruction Process: In this phase, we need to prove
that the data P can be successfully reconstructed only when
kr (kr ≥ k) shares are combined. To mathematically show
the process of combining kr shares (i.e., kr rows from R)
in the reconstruction phase, we first generate a matrix Rm

with the same size of R. Rm contains kr rows of 1s and 0s
in all the rest rows. Using Rm , we can select kr rows of data
from R to obtain matrix R1.

R1 = R ∗ Rm = P1 ∗ S ∗ Rm (14)

The reconstruction process then generates a reconstructed
matrix Rr by

Rr ( j) = R1(1, j)‖R1(2, j)‖, . . . , ‖R1(n, j)

= (P1(1, j) ∗ S(1, j) ∗ Rm(1, j))‖(P1(2, j) ∗ S(2, j)

∗ Rm(2, j))‖, . . . , ‖(P1(n, j) ∗ S(n, j) ∗ Rm(n, j))

= (P( j) ∗ S(1, j) ∗ Rm(1, j))‖(P( j) ∗ S(2, j)

∗ Rm(2, j))‖, . . . , ‖(P( j) ∗ S(n, j) ∗ Rm(n, j))

= P( j) ∗ [(S(1, j) ∗ Rm(1, j))‖(S(2, j) ∗ Rm(2, j))

‖, . . . , ‖(S(n, j) ∗ Rm(n, j))]
= P( j) ∗ RS( j) (15)
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Fig. 2. Illustrative example of reconstruction processes when combining (a) two (kr = 2) and (b) three (kr = 3) shares, respectively.

where j = 1, 2, . . . , w and “‖” is the bit-level boolean
function “or”.

RS( j) = (S(1, j) ∗ Rm(1, j))‖(S(2, j) ∗ Rm(2, j))

‖, . . . , ‖(S(n, j) ∗ Rm(n, j)) (16)

where RS( j) is the result of selecting kr rows in the j th

column of sharing matrix S. From the definition of the sharing
matrix in Eq. (2), when kr ≥ k, there is at least one “1” in
each column. This means that, for each j , there must be at
least one element in Eq. (16) satisfying S(i, j)∗ Rm(i, j) = 1,
i ∈ 1, 2, . . . , n. Hence, RS( j) = 1 and Rr ( j) = P( j).
These demonstrate that the reconstructed Rr is the same as
the original data P .

When kr < k, from Eq. (3), for each j , there must
be at least one element satisfying S(i, j) ∗ Rm(i, j) = 0,
i ∈ 1, 2, . . . , n. Hence, there must be one j making RS( j) = 0
and finally resulting in Rr ( j) = 0. This demonstrates that the
reconstructed Rr �= P .

Thus, the (k, n)-sharing matrix is able to reconstruct the
original data without any error when at least k shares are
combined. This demonstrates that it is suitable for secret
sharing.

Following the example in sharing process, we give an
illustration in Fig. 2 to show the reconstruction process in
detail. Here, Rkr , j

m means the j th possible permutation of
Rm when combining kr shares. 11×6 and 01×6 are vectors
with size of 1 × 6 and all “1”s and “0”s, respectively.
Thus, when combining any 2 shares, 6 possible reconstruction
results {R2, j

r }6
j=1 will be generated as shown in Fig. 2(a).

Because the (3, 4)-sharing matrix is being used, combining
any two shares is not sufficient to successfully reconstruct the
original data. On the other hand, any three shares are able to

reconstruct the original data matrix P without distortion (see
the reconstruction results {R3, j

r }4
j=1 in Fig. 2(b)).

Topic 4: As analyzed in Topic 3, the proposed (k, n)-sharing
matrix S(k,n) is able to successfully recover the original data
when at least k shares are combined. However, directly using
S(k,n) for secret sharing may cause information leakage. This
is because each generated share contains partial information of
the original data (see the example in Topic 3). This motivates
us to propose the lossless (k, n)-secret image sharing scheme
by combining of sharing matrix and image encryption
(SMIE-SIS) (see Section III). And more discussions of about
these can be found in security analysis in Section VI.

III. (k, n)-SECRET IMAGE SHARING SCHEME BY

COMBINING THE SHARING MATRIX AND

IMAGE ENCRYPTION

In this section, we propose a new (k, n)-secret image
sharing scheme by combining the sharing matrix and image
encryption (SMIE-SIS). SMIE-SIS encrypts the original image
into a noise-like random sequence before secret sharing with
hiding the “key” into secret share. Thus, each generated share
is noise-like, and has no information leakage. In the recon-
struction phase, only when the recovered encrypted image is
identical to encrypted image before secret sharing, the correct
decryption key can be successfully extracted to obtain the
original image with right ciphertext. As an important property
to ensure high security, even with the same original image
and same settings of k and n, each execution of the proposed
SMIE-SIS yields completely different, unpredictable, and non-
repetitive secret shares.
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Fig. 3. The proposed SMIE-SIS.

A. SMIE-SIS

The flow chart of the proposed SMIE-SIS is shown in Fig. 3.
SMIE-SIS first encrypts the original image using a substitution
process, and utilizes a sharing encoding process to generate
different shares. Combining k or more shares, the authorized
users are able to completely reconstruct the original image.

1) Encryption: The encryption process is to transfer a W×L
original image into a 1D noise-like data sequence for the
subsequent sharing coding process. The Tent map used in
Eq. (19) is to generate a random chaotic sequence. Due to the
chaotic properties of the Tent map, a tiny change of its input
or parameter yields a significant change in its output. Notice
that the users have flexibility to choose another chaotic map
to generate the random sequence.

Firstly, we use a random number generator to produce a
security key K = {k1, k2, . . . , k192}, where kψ ∈ [0, 1],
1 ≤ ψ ≤ 192. Using K , two sets of initial parameters,
(r1,C1(1)) and (r2,C2(1)), for the Tent map are generated
using Eqs. (17) and (18).

rx = (

4∏

i=1

ai ∗ 248 + ax) mod 0.4 + 3.6 (17)

Cx (1) = (

4∏

i=1

ai ∗ 248 + ax+2) mod 1 (18)

where x = 1, 2 and ai =
∑48i

t=48i−47 kt ∗2t−48i+47

248 for i = 1, 2, 3, 4.
Two random sequences C1 and C2 are then produced by

Eq. (19)

Cx(y)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cx (1) if y = 1

1

2
rx Cx (y − 1) if y �= 1 & Cx (y − 1) < 0.5

1

2
rx (1 − Cx (y − 1)) if y �= 1 & Cx (y − 1) ≥ 0.5

(19)

where y = 1, 2, . . . ,W × L.
Scanning the original image O from left to right and then

up to down, the original image is transformed into a 1D
data matrix V . Applying the random sequences C1 and C2

to Eq. (20), the substitution process encrypts matrix V into a
1D matrix E2( j).

E2(y) =

⎧
⎪⎪⎨

⎪⎪⎩

E1(y) if y = W × L

(
E1(y)+ 
C2(y)× 1013� + E1(y + 1)

)
mod 256

otherwise

(20)

where 
·� and mod are the floor and modulo functions, and

E1(y) =

⎧
⎪⎪⎨

⎪⎪⎩

V (y) if y = 1

(
V (y)+ 
C1(y)× 1013� + V (y − 1)

)
mod 256

otherwise
(21)

Combining the encrypted data matrix E2 with the security
key Ks , we obtain the final encrypted data sequence E ,

E = (Ks, E2) (22)

where Ks = 〈K ⊕ �
∑

E2�〉. Here ⊕ is the bitwise XOR and
function �∗� converts an integer into a binary sequence. Since
K contains 192 bits, the summation value

∑
E2 of all pixels

in E2 is converted into 192 bits as well. Finally, function 〈∗〉
converts the binary sequence into 24 integers in which each
one is produced by 8 binary bits. Thus, the size of E is
1 × (W × L + 24).

2) Sharing Encoding: SMIE-SIS uses four main steps to
perform sharing encoding.

The first step is to use the proposed generation algorithm in
Section II-B to produce the (k, n)-sharing matrix S(k,n) with
size of n×Ns . With the (k, n)-sharing matrix S(k,n), we repeat
this sharing matrix to be the same size of encrypted data as
the reference for sharing encoding.

For each encrypted data matrix E , if its corresponding value
in the same position of sharing matrix is equal to one, it will
be kept in the data sequence. But if this corresponding value
in sharing matrix is equal to 0, this encrypted data in E will be
deleted. By this referenced process, encoded matrix H i will
be generated.

After generating encoded matrix, all the important informa-
tion will be fused into each 1D encoded share Fi . Each 1D
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Fig. 4. Image reconstruction of SMIE-SIS.

encoded share Fi consists of three parts as defined by

Fi =
(

D, Bi , H i
)

(23)

where D is a 1D matrix with size of 1 × 2. It is utilized to
store the value of Ns and calculated by

D(1) = 
 Ns

256
� (24)

D(2) = Nsmod 256 (25)

and Bi is also a 1D matrix with size of 1 × �Ns
8 �, where �·�

is the ceiling function. It converts S(i, :) into a series of 8-bit
binary sequences and stores them in a decimal format using
Eq. (26).

Bi ( j) =
8 j∑

j1=8 j−7

Ŝ(i, j1)× 2 j1−8 j+7 j = 1, 2, . . . , �Ns

8
�

(26)

Here Ŝ(i, :) = (S(i, :), 01×z), and 01×z is a 1D zero matrix
with size of 1 × z, where z = f (Ns, 8) and function f (a, b)
is defined by Eq. (27).

f (a, b) =
{

0, if a mod b = 0

b − (a mod b), otherwise
(27)

The previous data in process are all in 1D. Since the final
output should be in 2D, a transformation from 1D to 2D will
be applied to each 1D encoded share. To do the transformation,
we first generate a 1D expanded share Gi using Eq. (28), and
reshape Gi to obtain the final 2D image share with size of
W × � li

W � where li is the length of the encoded share Fi .

Gi =
{

Fi if (li mod W ) = 0(
Fi , 01×v

)
otherwise

(28)

where 01×v is a 1D zero matrix and v = f (li ,W ).
Next, we will discuss how the authorized users reconstruct

the original image using k or more image shares.

B. Image Reconstruction

To completely reconstruct the original image, the authorized
users should receive kr (kr ≥ k) image shares. The reconstruc-
tion procedure is unrelated to the orders of image shares. Each
2D share is transformed to a 1D sequence, and then divided
into three parts: (1) the first two values to recover Ns using
the inverse processes of Eqs. (24)-(25); (2) subsequent �Ns

8 �
integers to be transformed to a binary sequence and set to the
i th row of S(k,n)(i, :) using Eq. (26); and (3) the rest data. The
procedure of image reconstruction can be shown in Fig. 4.

Using this recovered sharing matrix S(k,n) as a reference,
the rest data of each received share {H j}kr

j=1 will be combined
together as matrix Hd to obtain their corresponding recon-
structed encrypted matrix Ed .

Next, we decrypt Ed to obtain the reconstructed original
image U . Matrix Ed is first divided into two parts: the
first 24 integers Ks and the rest data E2. Using Eq. (29),
the encryption key K is reconstructed and used to generate
two chaotic sequences C1 and C2. Using Eqs. (30)-(31) and
transforming 1D sequence V to 2D, the original image U is
finally reconstructed.

K = �Ks� ⊕ �
∑

E2� (29)

V ( j) =

⎧
⎪⎨

⎪⎩

E1(y), if y = W × L(
E1(y)+
C1(y)× 1013�+E1(y + 1)

)
mod 256,

otherwise

(30)

E1( j) =

⎧
⎪⎨

⎪⎩

E2(y), if y = 1(
E2(y)+
C2(y)× 1013�+E2(y − 1)

)
mod 256,

otherwise

(31)

If kr ≥ k, the reconstructed image U is the same as
the original image; Otherwise, it will be a noise-like image,
preventing information leakage.

C. Theoretical Security Analysis

The security of the proposed SMIE-SIS is theoretically
analyzed in three aspects: (1) image encryption; (2) sharing
process; (3) the combination of encryption and sharing to
achieve “1 + 1 > 2”.

The security of image encryption can be ensured by four
factors: 1) large key space; 2) high diffusion property, 3) high
confusion property, 4) non-duplicate property. The key space
of the proposed SMIE-SIS is 2192, which is larger than the
basic key space requirement of 2100 [29]. This large key
space provides the ability to defend the brute-force attack.
The high confusion property can be ensured by the noise-like
appearance of each share. From these noise-like shares, no
visual information about original images can be disclosed. The
high diffusion property can be verified by the high sensitivity
of the proposed encryption part in SMIE-SIS to the plaintext
and ciphertext. A tiny change in the plaintext or ciphertext will
be spread over the whole encryption or decryption process to
generate totally different results. The non-duplicate property
allows that any two executions of image encryption generate
different encrypted results, even with same inputs. This prop-
erty solves the weakness of many existing image encryption
methods and makes this encryption part to well defend some
cryptanalysis attacks [30]–[33], such as differential attack and
known-plaintext attack.

Based on these four properties, a mathematical proof of
security can be presented in Eqs.(32)-(38), where Pr [ ] shows
the probability and Enc(o, k) represents the process of the
introduced encryption part (Enc) with a key (k ∈ K ) and an
original image (o ∈ O).
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For an arbitrary encrypted result e ∈ E and original image
o ∈ O

Pr [E = e|O = o] = Pr [E = e, O = o]
Pr [O = o] (32)

Since Enc(o, k) = e and Enc(.) is a one-to-one function,

Pr [E = e, O = o] = Pr [K = k, O = o] (33)

Since K and O are independent,

∴ Pr [E = e, O = o] = Pr [K = k, O = o]
= Pr [K = k] · Pr [O = o] (34)

∴ Pr [E = e|O = o] = Pr [K = k] · Pr [O = o]
Pr [O = o]

= Pr [K = k]
= 2−192 (35)

where, the key K is a uniform 192-bit string.

Pr [E = e] = �o∈O Pr [E = e|O = o] · Pr [O = o]
= 2−192 ·�o∈O Pr [O = o]
= 2−192 (36)

According to Bayes’ Theorem,

Pr [O = o|E = e] = Pr [E = e|O = o] · Pr [O = o]
Pr [E = e]

= 2−192 · Pr [O = o]
2−192

= Pr [O = o] (37)

According to the definition of secure in [34], an encryption
scheme (Gen, Enc, Dec) with message space O is perfectly
secret if for every probability distribution over E , every
message o ∈ O, and every ciphertext e ∈ E for which
Pr [e = E] > 0:

Pr [O = o|E = e] = Pr [O = o] (38)

Hence, this encryption part has a certain security level to
prevent original information leakage. Further, any existing
image encryption algorithm with a high security level can
be used in our SMIE-SIS. Hence, the security of SMIE-SIS
can be improved by including the choice of image encryption
algorithm [35]–[37].

The security provided by the sharing process is based on
two facts: 1) each share contains only a part of encrypted
information, and 2) the sharing process is able to detect a
fake share. As analyzed in Section II-D, a true share contains
only a part of encrypted information and cannot disclose all
encrypted information. And, once a fake share is involved
in the reconstruction phase, it will be quickly detected and
located. Hence, only a combination of not less than k true
shares can successfully reconstruct the original image. The
ability of detecting a fake share will be further demonstrated
by experimental results in Section VI-D.

From above analysis, we have carefully considered security
issues in the image encryption and sharing processes. For the
encryption part, a successful attack is to guess the key with a
probability in Eq. (39).

Pr [Encbreak] = 2−192 (39)

For the image sharing part, one efficient attack is to guess a
whole true image share with a probability as shown in Eq. (40).

Pr [Sharingbreak] = 256−(1+W ·L/2) (40)

Hence, the probability of a successful attack to the whole
system is calculated in Eq. (41).

Pr [Successbreak] = Pr [Encbreak] · Pr [Sharingbreak]
= 256−(1+W ·L/2) ∗ 2−192

= 2−4W ·L−200 (41)

For an image with the size of 256∗256, the probability of a
successful attack will be as shown in Eq. (42). Theoretically,
this chance of a successful brute-force attack is too small to be
zero. Combining the image encryption and sharing processes,
SMIE-SIS can achieve a high level of security in a “1+1 > 2”
fashion. Beside these theoretical analysis, some experimental
security analysis are conducted in Section VI.

Pr [Successbreak] = 2−262344 (42)

D. Discussion

Different from existing methods of visual cryptogra-
phy (VC) and polynomial-based secret image sharing (PSIS),
SMIE-SIS has at least seven advantages:

(1) SMIE-SIS is a lossless secret image sharing system,
namely the original image can be completely recon-
structed without any distortion.

(2) SMIE-SIS is a generalized (k, n)-secret image sharing
system with arbitrary k values.

(3) SMIE-SIS can be used for different types of images,
such as binary, grayscale and color images.

(4) SMIE-SIS is a non-deterministic secret image sharing
system. With the same original image and same para-
meter settings of k and n, SMIE-SIS is able to generate
completely different unpredictable and non-repetitive
shares in each execution of SMIE-SIS. This will provide
a high level of security to withstand different attacks.

(5) SMIE-SIS has much lower pixel expansion than most
existing methods. Thus, it has low costs of storage and
transmission.

(6) SMIE-SIS has a computation cost much lower than
PSIS.

(7) SMIE-SIS has the verification function to detect and
locate a fake share.

IV. SIMULATION RESULTS

To demonstrate the robustness of SMIE-SIS, Figs. 5-6
show several simulation results of binary, grayscale and color
images using SMIE-SIS with different (k, n)-sharing matrices.
As shown in Figs. 5-6, all the secret shares are noise-like
image, protecting from information leakage. And the k can be
set to 3, 4, 5, and other any number users want to use. Most
importantly, with enough number of shares, the original image
will be reconstructed without any data loss. When only less
than k shares are available, the reconstructed images are noise-
like. These demonstrate SMIE-SIS is able to achieve lossless
secret sharing for different types of original images.
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Fig. 5. Binary image security sharing using the proposed SMIE-SIS with
the (3, 4)-sharing matrix. (a) is the original image with size of 256 × 256;
(b)-(e) are four different Shares with size of 129 × 256; (f) and (g) are
reconstructed images using any 2 and 3 shares, respectively.

Fig. 6. Grayscale image security sharing using the proposed SMIE-SIS
with the (4, 6)-sharing matrix. (a) is original image with size of 256 × 256;
(b)-(f) are six different shares with size of 129×256; (h)-(j) are reconstructed
images with any 2, 3 and 4 shares, respectively.

Fig. 7. Color image security sharing using the proposed SMIE-SIS with the
(5, 8)-sharing matrix. (a) is original image with size of 256 × 256; (b)-(i) are
eight different shares with size of 129 × 256; (j)-(m) are reconstructed image
using 2, 3, 4 and any 5 shares, respectively.

V. PERFORMANCE ANALYSIS

Compared with existing CV and PSIS methods, the pro-
posed SMIE-SIS has excellent performance with respect to
distortion analysis, pixel expansion and computation cost.

A. Distortion Analysis

Distortion analysis aims to evaluate the differences between
the original and reconstructed images. The analysis results are

Fig. 8. Security analysis of SMIE-SIS. (a)-(d) show Shares 1-4 with a size
of 129 × 256; (e) is a fake share of Share 4 with only one pixel change in
position (100,100); (f) shows differences between Share 4 and the fake share;
(g) is the reconstructed image with Shares 1-4 with a size of 256×256; (h) is
the reconstructed image with Shares 1-3 and the fake share.

Fig. 9. Distortion Analysis. (a) is the original binary image; (b) is
reconstruction of the CV method in [21]; (c) is reconstruction of SMIE-SIS;
(d) is the original grayscale image; (e)-(h) are reconstruction results of the
lossy PSIS method in [25], Chen’s method in [27], Ulutas’s method in [28],
and SMIE-SIS, respectively.

shown in Fig. 9. We apply SMIE-SIS and the VC method
in [21] to a binary image in Fig. 9(a) and then use a sufficient
number of image shares to reconstruct the image as shown in
Fig. 9(b) and (c). The reconstructed image of the CV method
contains huge background noise as shown in Fig. 9(b).

We then apply SMIE-SIS and an existing PSIS method
in [25] to a grayscale image in Fig. 9(d) using the same
threshold k = 4, and then reconstruct the image using any
four image shares. The reconstructed results are shown in
Fig. 9(e) and (f). For the PSIS method in [25], all pixel values
larger than 255 in image shares are set to 255 when stored in
a computer. This results in a data loss in the reconstruction
phase as shown in Fig. 9(e). To solve this problem, two
lossless schemes have been proposed to achieve no data loss
by using quadratic residues [27], [28]. Since these lossless
methods were designed only for the (k = 1, n = 2) case, their
reconstructed results is presented in Figs. 9 (f) and (g). These
results are identical to the original image.

As shown in Figs. 9(c), (f), (g), and (h), the reconstruction
results of the Chen’s method [27], the Ulutas’s method [28],
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TABLE I

PSNR AND SSIM RESULTS OF THE RECONSTRUCTED IMAGES

and the proposed SMIE-SIS have no visual distortion. These
are also verified by the PSNR and SSIM measure results of the
reconstructed images. A higher PSNR or SSIM value means
better quality, and thus more similar to the original image.
From the PSNR and SSIM results shown in Table I, the results
of the CV method are quite low because its reconstructed
images contain a lot of noise. The results of the PSIS method
in [25] is slightly high because lossy PSIS recovers the original
image with little noise. However, the results of the proposed
SMIE-SIS, Chen’s method [27], and Ulutas’s method [28]
reach the maximum values of PSNR and SSIM: Inf and 1,
respectively. This means that the reconstructed image is the
same as the original image. Therefore, SMIE-SIS is a lossless
secret image sharing system and outperforms existing CV and
PSIS method in [25]. It has the same lossless property as
existing lossless PSIS methods.

B. Pixel Expansion

Pixel expansion is an important cost evaluation of data
transmission and storage. It is defined by the ratio (μ) between
the size of each share (λ1) and the size of the original
image (λ2) as shown in Eq. (43).

μ = λ1

λ2
(43)

μ > 1 means that each pixel in the original image will
be expanded during secure sharing. When μ = 1, each
image share has the same size with the original image. When
μ < 1, the original image is compressed by the secure sharing
algorithm. Hence, each image share is smaller than the original
image. Smaller ratio μ means a higher compression, and thus
a lower cost of transmitting and storing image shares.

From Eq. (43), the pixel expansion ratio of the proposed
SMIE-SIS can be calculated by

μ = 1 − (1/2)�log2(n/(2k−2))+1� + δ

≈ 1 − (1/2)�log2(n/(2k−2))+1� (44)

where δ can be approximately calculated by

δ = p

λ2
(45)

For the i th share, p is the information to store the i th row
of secret matrix S(k,n), including the size of D and Bi as
defined in Eq. (23). Because p = 2 + �Ns

8 � pixels in total are
needed to store D and Bi , p is quit small compared with the
size of image share Fi (see Eq. (23)). For example, for an

TABLE II

PIXEL EXPANSION COMPARISON OF DIFFERENT METHODS

Fig. 10. Computation cost comparison in the sharing and reconstruction
phases.

original image with size of 256 × 256, when k = 4, n = 6,
p equals to 2+� 20

8 � = 5, and δ is as small as 5/(256×256) =
7.6e − 5. Thus, it is reasonable to approximately calculate the
pixel expansion ratio μ without δ.

Table II compares the pixel expansion of SMIE-SIS with
those of four existing VC methods including the Yang’s algo-
rithm [38], Hou’s algorithm [14], Chao’s algorithm [40] and
Wu’s algorithm [39]. As we can observe, the pixel expansion
of the Hou’s [14] and Wu’s [39] algorithms is equal to one.
The Yang’s algorithm [38] has more than one pixel expansion
while the Chao’s algorithm [40] has the pixel expansion in
range of (0, 2). However, SMIE-SIS has pixel expansion in
range of (0.5, 1). These demonstrate that SMIE-SIS can reduce
the data transmission and storage cost, and outperforms these
existing methods.

C. Computation Cost

Although CV methods have almost no computation cost in
the reconstruction phase, they have a high pixel expansion
ratio and quite low-quality reconstruction. PSIS needs a sig-
nificantly large computation cost in the reconstruction phase
due to the Lagrange interpolation.

Fig. 10 shows a computation cost comparison between
the PSIS method in [25] and our SMIE-SIS using
MATLAB R2013a in a computer with the Windows 8.1
operating system, Intel(R) Core(TM) i5-4460 CPU@3.20GHz
and 12 GB RAM. As can be seen, with the increase of k
and n, the computational cost of SMIE-SIS becomes larger.
SMIE-SIS requires a slightly larger computation cost than
the PSIS method in the sharing phase. However, SMIE-SIS
significantly reduces the computation cost in the reconstruction
phase while achieving pixel compression and lossless recon-
struction, especially when the value of k is small. This is
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TABLE III

PERFORMANCE COMPARISONS

extremely important for users who have devices with limited
capability of data processing. Thus, SMIE-SIS is more suitable
for applications.

D. Performance Comparison

Performance comparisons among SMIE-SIS, VC and PSIS
from different aspects are shown in Table III. The VC method
outperforms other methods in no reconstruction cost, but it has
the limitations of a high expansion ratio, a large data loss and
mainly working for binary images. PSIS can be divided into
two categories: lossy and lossless, according to data loss in
reconstructed images. Except for the high expansion ratio (like
μ = 1 for [27] and μ > 1 for [28]) and high computation cost,
lossy PSIS suffers from small distortion, while lossless PSIS
suffers from limited settings of k and n (like k = 1, n = 2
only in [27] and [28]). Hence, the proposed SMIE-SIS has
excellent advantages, including low reconstruction cost, small
expansion ratio to save storage and transmission costs, no data
loss, and suitable for all types of original images.

VI. EXPERIMENTAL SECURITY ANALYSIS

Security of existing methods rely only on the secret sharing
process, while the proposed SMIE-SIS depends on both the
secret sharing and encryption processes. In Section III-C,
we theoretically analyze the security of proposed SMIE-SIS.
In this section, we experimentally analyze its security and
demonstrate that SMIE-SIS has the ability to resist several
common attacks such as the brute-force attack, differential
attack and fake share attack.

A. Brute-Force Attack

In addition to a large key space analyzed in Section III-C,
SMIE-SIS is able to defend the brute-force attack due to its
high sensitivity to the security key, ciphertext and plaintext.
These high sensitivity mainly results from the utilized image
encryption’s high key sensitivity to initial conditions, and high
chaotic behaviors of the utilized dynamical system. They also
ensure the security of the chaotic sequence generated by the
Tent map and key.

Since the chaotic system is sensitive to its initial
conditions, different security keys yield different chaotic
sequences [41]–[43]. In order to test the key sensitivity of
SMIE-SIS, we first randomly generate a 192-bit security key
denoted by K (0). Based on K (0), we generate other 192 keys
denoted by K (1), K (2),…, K (192), where K (i)(1 ≤ i ≤ 192)
is generated from K (0) by flipping the i th bit in K (0). Thus

Fig. 11. Distributions of initial values (a) r1, r2 and (b) C1(1), C2(1) that
are generated by 193 binary sequences.

Fig. 12. Lyapunov exponent (a) and bifurcation diagram (b) of the Tent map
used in Eq. (19).

K (i) is only one bit different from K (0) in the i th bit. These
193 keys are then utilized to generate 193 sets of initial
conditions (r1,C1(1), r2,C2(1)) using Eqs. (17) and (18). The
results are plotted in Fig. 11. We can observe that, even with a
tiny difference in the security keys, the values of r1,C1(1), r2
and C2(1) change dramatically within their corresponding data
ranges. Thus, it is extremely difficult for the attackers to obtain
the chaotic sequences by analyzing the security keys.

Different from other chaotic systems suffering from the
inadequacy problem [44], Tent map shows a good chaotic
map across a large parameter range [45], which can be
demonstrated by Lyapunov exponent and bifurcation diagram.
Lyapunov exponent (LE) is a measure to describe chaotic
behaviors of the dynamical system [46]. Here, we use LE
to measure chaotic behaviors of the Tent map in Eq. (19).
From the LE results plotted in Fig. 12, we can observe that,
when the initial parameter is set to the range of [3.6, 4], the
LE results are larger than 0. This means the Tent map in
Eq. (19) has good chaotic behaviors in this range. This also
can be demonstrated by its bifurcation diagram, which shows
uniform distribution of generated chaotic values. Considering
our settings for r1 and r2 in the range of [3.6, 4], the chaotic
sequence shows a good randomness property.

A simulation test is conducted to visually show the process
and result of a brute-force attack. Unauthorized users may
intend to break a secret sharing system using the brute-force
attack to guess the secret share for illegal reconstruction.
Fig. 8 shows the results of the brute-force attack when
applying a (4, 6)-sharing matrix to a grayscale image with
size of 256 × 256. A fake share in Fig. 8(e) is generated by
changing only one pixel value of Share 4 in location (100,100).
We can observe that, when combining this fake share with
three correct secret shares in Fig. 8(a)-(c), the reconstructed
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TABLE IV

NPCR, UACI, SRCC AND KRCC RESULTS OF DIFFERENT METHODS WITH (4, 6)-SHARING SCHEME

TABLE V

SHANNON ENTROPY ANALYSIS (AVERAGE)

image is noise-like as shown in Fig. 8(h). If and only if four
or more secret shares are correctly received, the receiver is
able to successfully reconstruct the original image without any
error. The possibility of correctly guessing all pixel values in
a share is 2−256×256. It is almost impossible, showing that the
proposed SMIE-SIS can resist the brute-force attack.

B. Shannon Entropy Analysis

Shannon Entropy is introduced to measure the uncer-
tainty [47]. From its mathematical definition, a larger value
of Shannon Entropy means larger uncertainty, and also means
more randomness. From the Shannon Entropy values of three
previously introduced simulation experiments in Figs. 5-7,
no matter what the original Shannon Entropy value is, the
average Shannon Entropy values of generated shares are close
to their theoretical maximum values (1 for binary images and
8 for grayscale and color images), as listed in Table V. This
demonstrates good random distributions of pixel values in
each share, and verifies good diffusion and confusion property
of the proposed system. Table V also includes the Shannon
Entropy values of unsuccessfully reconstructed images with
less than k shares. Their Shannon Entropy values (close to their
theoretical maximum values) show the random distribution of
the pixel values in unsuccessful reconstruction results. Hence,
from this statistical perspective, there is no original secret
information leakage in the unsuccessful reconstructions.

C. Differential Attack

Differential attack is to build a relationship of the
differences in input and output to guess the original input using
the knowledge of the output. To resist the differential attack,
we have to ensure that a small change in input will result in a
significant difference in output. Because the proposed SMIE-
SIS has non-duplicate property, even using the same original
image and same parameter settings, SMIE-SIS produces
completely different shares in each execution of SMIE-SIS.

To evaluate the differences of two outputs of SMIE-SIS
in two executions with the same input, we use the Unified
Average Changing Intensity (UACI) and Number of Pixel
Change Rate (NPCR) as defined in Eqs. (46)-(47), where
E1 and E2 are two output images with size of M × N .

U AC I = 1

M N

M∑

m=1

N∑

n=1

( |E1(m, n)− E2(m, n)|
255

)
× 100%

(46)

N PC R =

M∑
m=1

N∑
n=1

B(m, n)

M N
× 100% (47)

where

B(m, n) =
{

1 For E1(m, n) �= E2(m, n)

0 Otherwise

A higher value of UACI or NPCR means a huger difference
between two output images. A zero value of UACI and NPCR
means two measured image are the same.

To investigate the correlation among image shares, we use
the Spearman’s Rank Correlation Coefficient (SRCC) and
Kendall Rank Correlation Coefficient (KRCC) to measure the
monotonicity of image shares generated by two executions of
SMIE-SIS. The definitions are provided in Eqs. (48) and (49),
where N is the totally number of pixels in each share.

SRCC = 1 − 6
∑N

i=1 d2
i

N(N2 − 1)
(48)

where di is the difference between ranks of the i th image share
in subjective and objective evaluations.

KRCC = Nc − Nd
1
2 N(N − 1)

(49)

where Nc and Nd are the numbers of concordant and
discordant pairs in two shares, respectively. The values of
SRCC and KRCC are within the range of [−1, 1]. The larger
absolute value of SRCC (or KRCC) means a higher correlation
between two images.

Table IV shows the UACI, NPCR, SRCC and KRCC
results of each share generated by the proposed SMIE-SIS
and existing methods. As can be observed, existing methods
obtain “0” values in the UACI and NPCR measures and
“1” values in the SRCC and KRCC measures. This means
that existing methods are vulnerable for differential attacks.
For the proposed SMIE-SIS, the values of UACI and NPCR
are extremely close to their theoretical values, 33.464% and
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Fig. 13. Fake share attack (k = 7). The (a) original image; (b) reconstructed
image with 7 true shares; and (c) reconstructed image using 7 true shares and
one fake share.

99.609%, which were proved in [48]. And, the values of
SRCC and KRCC are close to 0. These demonstrate that
SMIE-SIS generates completely different secret shares in two
different executions of SMIE-SIS with the same input image
and parameters. These ensure a high security level of the
proposed SMIE-SIS to withstand different attacks.

D. Fake Share Attack

In real applications, attackers intend to use a fake share to
detect information when there are more than k shares involved
in the reconstruction phase. Existing methods fail to resist
this attack. The proposed SMIE-SIS has a special verification
function to detect which share is a fake one. Fig. 13 shows
the reconstruction results using k = 7 true shares and one fake
share. Once a fake share is involved in reconstruction, even the
number of true share is larger than k, the proposed SMIE-SIS
cannot recover any information of the original image. If and
only if all involved shares are true shares and are not less than
k, SMIE-SIS can recover the original image. The proposed
SMIE-SIS has a high level of security for real applications.

VII. CONCLUSION

In this paper, we first introduced the mathematical defin-
ition, generation algorithm and mathematical analysis of the
(k, n)-sharing matrix S(k,n). Combining sharing matrix S(k,n)

and chaotic-based encryption, we have further proposed an
SMIE-SIS for lossless verifiable (k, n)-secret image sharing.
It utilizes a (k, n)-sharing matrix to perform the sharing
coding and chaotic-based encryption to obtain n noise-like
secret shares. Mathematical analysis has shown that S(k,n) is
suitable for image sharing and the combination of chaotic-
based encryption and sharing matrix is able to provide high
security level. Simulation results have shown that the proposed
SMIE-SIS is robust to protect different types of images,
including binary, grayscale and color images. The performance
analysis demonstrated that SMIE-SIS outperforms several
existing visual cryptography and PSIS methods in: 1) lossless
reconstruction of the original images, 2) a low pixel expansion
ratio to reduce the storage and transmission costs, 3) a low
computation cost. The security analysis including theory
analysis and experimental demonstration show SMIE-SIS has
a high level of security to withstand the brute-force attack,
differential attacks, and a verification function to detect the
fake shares.
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